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Abstract: Allylsilanes serve as three-carbon dipole equivalents for the formation of
tetrahydronaphthalenes via Lewis-acid promoted formal [3+-3]-cycloadditions with benzylic cations.
A competing [3+2]-pathway resulted in the formation of dihydro(1H)indenes. Both quinone
methides and benzylic alcohols were used as precursors to the benzylic cations.

Allylsilanes have seen wide application as allylic anion equivalents in reactions with various types of
electrophites.! Recently, several groups have shown allyisilanes to be efficient three-carbon cycloaddends in
formal [3+2)-cycloadditions with o, B-unsaturated carbonyl compounds2-4 and nitrosium salts.5 In these reactions,
the silicon atom, which serves to stabilize the adjacent positive charge, undergoes a 1,2-migration and is retained
in the final product. A mechanistically related reaction using allenylsilanes was previously reported by Danheiser
and coworkers.® We have shown that benzylic cations can serve as three-carbon cycloaddends in formal [3+2]-
cycloaddition reactions with alkenes,” and [3+3]-cycloadditions with allenylsilanes8 and considered exploring
similar methodology with allylsilanes.

The use of allylsilanes in formal cycloadditions with benzylic cations may allow the preparation of
tetrahydronaphthalenes via a formal [3+3]-cycloaddition (Scheme 1). Initially, it was not clear if the intermediate
silyl stabilized cation, 3, would undergo silyl migration to form a tetrahydronaphthalene (4, path a), or a
dihydro(1 R)indene (5, path b). We report here our initial observations on this reaction and the factors affecting
the formation of tetrahydronaphthalene and dihydro(1Hjindene products.?

Scheme 1. Proposed Formal [3+3])- and [3+2])-Cycloaddition Reaction.
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Allyltriisopropylsilane and allyltert-butyldiphenyisilane were chosen for this initial study because
Danheiser6d had shown that increased steric bulk at silicon suppressaes loss of silicon.10.11 Table 1 summarizes
our results using benzylic alcohols as the benzylic cation precursor. The presence of an acid scavenger,
methyltrimethoxysilane or di-tert-butylpyridine, and an excess of allylsiiane were required for good yields of
products.12 Primary benzylic cations afforded good yields of tetrahydronaphthalenes with no trace of
dihydro(1H)indenes, irrespective of which allylsilane was used (entries 1-3). Secondary benzylic cations,
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however, afforded mixtures of five- and six-membered ring products (entries 4-6). It is interesting to note that
bis-benzylic alcohol 13 afforded 14 and 15 as single diastereomers (capillary GC, 'H NMR analysis). Tertiary
benzylic alcohol 16 {entry 7) afforded a low yield of both five- and six-membered ring products. A preliminary
survey of benzylic alcohols lacking substituents on the aryl ring showed polymerization of the benzylic alcohol to
be the major reaction pathway.

Table 1. Reactions of Benzylic Alcohols with Allylsilanes.2

Entry Starting Material Conds® Allyl Silane Product(s) Yield(%)
OH OH
CH,O OCH CHZ0. OCH
1 * B A~ SilHPr), : 51
6 7
OH SI(HPR),
OH ) OH
HoC CHaq Z~SiRy HL CHy
Rz = (Ph)tBu
2 8 B b 64
oH R3 = (HPr3) SiR,
3 A 71
OH OH CHs0, OH
CH;0 OCH;, CH0 OCH,
Sif-Pr) OCH;
4 10 A s a n 12 80b
OH SHFPr)s Si(iPr),
27% (1: 14 53% (4.7 : 14
5 CH;O OH OCH, A~SiRs CH;0 CHZ0 SiR, 87
; 14 : 18
SIS G A ¢ SR
14 15
13 . OCH, e
6 CHZ0 OCH,3 B Rz = (i-Prg) CHZO OCH, OCHS 14’9(.)15f
O @ 5
CH,0 CH 0
OH OH OH

HC CH, HeC CHy HEC CHy
7 186 A A~ SilP)y 17 18 age
. 17 : 18
OH Si(FPr) P 3 . g

aGeneral Procedure: SnCly4 (3 equiv, 1.0 M in CH2Cl2) was added to a solution of the benzylic alcohol (1 equiv), acid scavenger (10
equiv; conditions A = CH3Si(OCHg)g; B = 2,6-di--butylpyridine), and allylsilane (§ equiv) in CHzCl, (0.02 M in benzylic alcohol) at 0°C.
After 30 min, aqueous workup (NaHCOg3) and flash chromatography atforded the product(s) in the yields indicated. bHPLC separation
afforded the products in the yields shown. CRatio of isomers by 'H NMR. dinseparable mixture, ratio determined by GC. ©®Reported
yield is for the mixture of isomers; HPLC separation afforded each isomer for characterization. fSingle diastereomer by GC analysis.

Quinone methides could also be usad as precursors to the benzylic cations (Table 2).13 Entries 1, 3,
and 4 in Table 2 gave the same products as entries 2, 7, and 4 in Table 1, respectively. In these cases the
yields and ratios of five- vs. six-membered ring products were similar, showing the reactions to be independent
of cation precursor. A major advantage offered by a quinone methide route to a benzylic cation is that a catalytic
amount of Lewis acid (0.1 equiv.) may be employed.
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Table 2. Reactions of Quinone Methides with an Allylsilane.

o]
HLC CH, 1.5 equiv CHy
~SiHP, and/or
I
At 2 0.1 equiv SnCl,, 0°C SiPr, Si(FPr)3

1.5 equiv (CHL0),SiCH,

Entry Quinone Methide Product(s) Yield(%)
[e] OH
HsC CHj HC CH,
1 19 9 78
Si(-Pr),
OH
HC CH, HL CH,
2 20 2t 76
| (3:1)2
Si(i-Pr)y
3 HiC CH, HC CH, H;,C
17
22 | 1 8
Si(+Pr, Si(FPr)y : 2)
CH30,
CH,O. OCH c OCH
s 2 HO s OCH,
4 23 1}
l 11 : 12
SI(I-Pf)a sl(l'Pf)g 1 . 1)
(1.6 : 1)ac (2.7: 1)ac
8Ratio of diastersomers by GC. PHPLC separation afforded the products in the yields shown.

Cinseparable mixture.

There appear to be at least three factors that affect the ratio of tetrahydronaphthalene to dihy-
dro(1H)indene products: (1) substituents on silicon; (2) substituents on the aryl ring of the benzylic cation; and
(3) substitution on the benzylic carbon of the cation.14 Primary benzylic cations afforded tetrahydronaphthalene
products, regardless of substitution on the benzylic cation or on silicon. Secondary and tertiary benzylic cations
afforded tetrahydronaphthalene and/or dihydro(1H)indene products depending on the factors noted above. For
example, the cations derived from 20 (Table 2, entry 2) and 23 (Table 2, entry 4) are both secondary benzylic
cations. Quinone methide 20 afforded six-membered ring cyclization product 21 exclusively, whereas 23
afforded a mixture of both five- and six-membered ring products (11 and 12). The formation of dihydro(1H)indene
12 from 23 can be attributed to the difference in substitution on the aryl ring of the benzylic cation; the aryl ring of
the intermediate [-silylcation derived from 23 is activated toward electraphilic aromatic substitution relative to that
derived from 20. Treatment of bis-benzylic alcohol 13 with allyitriisopropyisilane afforded a mixture of five- and
six-membered ring products (Table 1, entry 6). The more bulky allyltert-butyldiphenylsilane afforded
dihydro(1 H)indene 15; R3 = t-Bu(Phy) exclusively (Table 1, entry 5). The complete selectivity for the five-
membered ring closure is noteworthy. It may be that the changes in ratio of the dihydro(1H)indenes to the
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tetrahydronaphthalenes are due to a difference in the degree of vertical vs. bridging stabilization of the
intermediate B-silylcations. Rapid capture of the intermediate silyl-stabilized cation, prior to bridging, would afford
alarger portion of dihydro(1H)indene.10.11 Tertiary benzylic cations also afforded dihydro(1H)indene products.
This may be due to a gem-dialkyl effect.15

The results of this study show that both formal [3+3]- and [3+2]-cycloadditions are possible with
allylsilanes and benzylic cations. An in-depth study of these competing formal cycloadditions may allow the
factors affecting sityl migration to be examined. We are currently exploring the regio- and stereoselectivity of this
reaction with substituted allylsilanes and will report the resulits in due course.
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